
Static and nonstatic electrical solenoids

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 731

(http://iopscience.iop.org/0305-4470/26/3/030)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 20:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 26 (1993) 731-742. Printed in the UK 
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Abstract. We propose the system of charge and current densities realizing static and 
non-static electric solenoids. There is a non-trivial electric vector potential outside the 
electrical cylindrical or toroidal solenoids. It cannot be eliminated by the gauge transforma- 
tion. The non-static solenoids emit waves of electromagnetic potentials propagating with 
the velocity of light. Conditions under which they can be detected are discussed. 

1. Introduction 

Magnetic solenoids have a broad application in physics and technology (see the review 
of their properties in [l, 21). Electrical solenoids (ES) are less well known objects. By 
these we mean the system of charge and currents generating an electrical field (EF) 
confined to a space region S of finite extension.’Although EF disappears outside S the 
non-trivial scalar electric and magnetic vector potentials (VP) could be different from 
zero there. As far as we know, there are only few references treating this subject. In 
[3] an electrical toroidal solenoid (ETS) was constructed in terms of the non-physical 
current of magnetic monopoles. Non-static point-like and cylindrical ES were studied 
in [4,5], respectively. In both of them non-vanishing charge and current densities were 
presented. In [6]  an ES was suggested with non-vanishing current density (and in the 
absence of charge). It is the aim of the present paper to treat ES systematically. The 
plan of our exposition is as follows. In section 2, the main facts concerning the magnetic 
toroidal solenoid (MTS) with constant current in its~winding are presented. In section 
3, an alternative viewpoint on the MTS is given. It turns out that magnetic dipoles 
properly distributed inside the torus exactly reproduce VP of the MTS with constant 
current. The boundary conditions satisfied by the magnetic field (MF) strength and 
induction are discussed in section 4. We change the magnetic dipoles inside the torus 
for electric ones in section 5, thus obtaining ETS. Non-static solenoids are studied in 
section 6. They emit waves of electromagnetic potentials, propagating off the solenoid 
with the velocity of light. A ’  possible scheme of experimental installation for their 
detection is discussed. 

2. Some facts concerning MTS 

Consider torus T 

( p - d ) ’ t  z’=R’. 
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Introduce the coordinates J,: p = d +I? cos $, z = fi sin J,. The value I? = R corres- 
ponds to the surface of T. Let the constant poloidal current (figure 1) flow over its 
surface. The density of this current is , 

j= -E  @-R) 
47r d + R  cos J, "*' 

Here g =2NI/c, N is the total number of turns in the poloidal coil, I is the current 
flowing in a particular turn, nly is the unit vector, defining the cnrrent direction on the 
torus surface: 

nly = n, cos J, - np sin J, np = n, cos 'p +ny sin 'p. 

The constant may also be expressed through the magnetic flux 4 inside T g =  
4[2n(d- d R )] . MFB=H=O~outside T and B=H=n,(g/p)  inside T. Here 
p is the-distance of the particular point inside T from the torus symmetry axis: 
p = d + R  cos J,. The VP of the MTS has been obtained in [7]; its properties were 
discussed in [SI. In the integral form, the non-vanishing cylindrical components of VP 
are: 

J+7 -1 ~~ 

coshp=(r2+d2+R2-2dp cos 'p)/2Rq q2=(pcoS'p-d)Z+zZ. 

Q.(x) is the Legendre function of the second kind. For the infinitely thin (R<c d )  TS 
these integrals can be taken in a closed form. Outside TS one has: 

i 
At large distances this VP falls as r-3 

sin 20 
r3 ' 

A,,-&g dR2- 
1+3cos20 

r3 A, -&rg dRZ 

Figure 1. Poloidai current Rowing on the toms surface. 
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3. An alternative viewpoint on the MTS 

Instead of the poloidal current (2.2) one may equally well use the magnetization: 
j =  c rot M [9,10]. This is confined entirely inside the TS and given by 

(3.1) M =- g 0 ( R  - J ( p  -d)'+z*). M = Mn, 
47763 

Here 0(x) is the step function. For the infinitely thin TS, M reduces to 

1 
4% 

M = - @ ( p - d ) 6 ( z )  

VP being expressed through the magnetization is 

r-r' 
Ir-rrj3 

M(r')x-dV'. (3.3) 

What is the physical meaning of these relations? Equations (3.2) and (3.3) tell us 
that infinitely thin MTS can be realized as a closed chain of magnetic dipoles (figure 
2).~ In fact, the value of VP at the point r produced by the elementary magnetic dipole 
at r' is given by [9 ]  

, 

n x (r- r') 
A(r) = m 

jr-r'j3 ' 
(3.41 

Here n and m are the direction and power of the dipole, respectively. Integrating this 
equation over the circumference of the radius d lying in the z = 0 plane (n = n,,,, r' = dn,) 
we arrive at (2.4) with g = 4 m / R 2  or 4 =47rm/d. Equations (3.1) and (3.3) mean that 
finite MTS may be realized as a closed spin tube of radius R In fact, integrating (3.4) 
over the volume of T (by m in (3.4) one should understand the. spin density coinciding 
with the magnetization (3.1)) we obtain (2.3). The closed spin tube (ferromagnetic ring 
with magnetization independent of applied fields) was used by Japanese physicists for 
experimental verification of the Aharonov-Bohm effect. The simpler case presents the 
cylindrical solenoid. It may be realized (figure 3) as a linear spin chain (or tube). In 
fact, integrating (3.4) over the Z axis we amve at the VP of the cylindrical solenoid: 
A = n&/Zmp. Such a spin chain (magnetized whisker) was used in earlier experiments 
testing the AB effect (see their review in [12]). 

! 

Figure 2. Explicit realization of the magnetic (elec- 
tric) toroidal solenoid by means of the circular mag- 
netic (electric) dipole chain. 
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I‘ Figure 3. Explicit realization of the magnetic (electric) cylindrical 
solenoid by means of the linear magnetic (electric) dipole chain. 

4. The magnetic field and boundary conditions 

We write out the general conditions defining B, H, M [9]: 

div B = 0 rot H = - j  4.rr. B =  H +4?rM. (4.1 ) 

For the TS with surface current, considered in section 2, M = 0; therefore B = H both 
inside and outside the TS. On its boundary the normal component o f  B is continuous 
whereas the tangential component of H suffers a finite jump equal to the surface 
current density. On the other hand, for the magnetized spin tube treated in section 3 
j = 0, M # 0. It turns out [13], that for the static case the condition div M = 0 guarantees 
that H vanishes everywhere while B differs from zero in those space regions, where 
M # 0. Hence, it follows that the solenoid of an arbitrary geometrical form can be 
constructed by filling this form with the substance having the solenoidal magnetization. 
The typical example is the closed uniformly magnetized filament of an arbitrary form. 
Such filaments are used in experiments testing the existence of the AB effect [14]. Some 
care is needed when one uses the magnetization formalism. If, for the current in 
vacuum, we introduce (formally) fictitious magnetization ( j  = c rot M )  then B = H 
everywhere. On the other hand, for the real medium with magnetization M we have 
(in the absence of current j )  

B =  H+4?rM 

C 

H=grad J Go(r, r‘) div M ( r ,  r’) dV‘ Go = lr- r’1-l. 

Thus, H = 0 if div M = 0. It follows from (4.1) that 

B=ro tA  div A = 0 AA = -47rM. 

The solution of this last equation is just (3.3). 

5. Electrical static solenoids 

Now we replace the magnetic dipoles by electric ones. Then, all equations obtained 
in sections 3 and 4 remain the same. The electric polarization is given by P = RI, 

for the circular dipole chain and P= 
finite ETS. Further, g = @.rr(d --)]-I and 
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+ is the electric induction flux through the cross section of the solenoid. In the~absence 
of free charges and external fields we have the following equations for D, E: 

div D = 0 rotE=O D = E  +47rP. (5.1) 

Eliminating E we obtain equations for D: 

div D = 0 (5.2) 

rot D = 47rP. (5.3) 

To satisfy (5.2) we put D ~ =  rot A,, div A, = 0 and obtain the following equation for 
A.: AA. =.-47r rot P. Its solution is 

dV’ dV’= P(r’)- I Ir-r’l’ 
r-r‘ 

(5.4) 

which coincides with (3.3). It follows from this that D=4?rP. Hence, E=O.  On the 
other hand, we may exclude D from (5.1) 

rotE=O div E = -47r div P. (5.5) 

To satisfy the first of these equations we put E = -grad +, thus arriving at 

+ = - Go(r, r‘) div P(r’) dV’. I A+=47rdivP 

Since div P = 0 for the treated toroidal configuration, so + = E = 0 everywhere and 
D = 4vP. 

The appearance of VP is a somewhat unusual fact in electrostatic problems. To 
clarify its physical meaning we consider the prolate axially symmetric ellipsoid 8 

p’ 22 
--+--I b’ c2- (5.6) 

with constant polarization directed along the z axis. Introduce the spheroidal 
coordinates 

p = a sinhpsin 8 z =  a cosh p cos 9. 

Let the value p = po correspond to the ellipsoid (5.6) 

b = a sinh po c=acoshpo .  (5.7) 

Then, polarization is given by 

P=Pon,. 

Equations (5.1) with polarization (5.8) may be solved in terms of scalar or vector 
electric potentials. In the first case one has: 

+ = 47rP0a sinh2 po cos Oho(@, po) 
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Here: 

Ql"(cosh P)Pl"(cosh PO) for P > PO 

Pl"(cosh P)Q!.Lcosh PO) for P PO 
f m ( K  PLO) = [ 

Py and Q? are the Legendre functions. 

( D  =rot A=). The answer is: 
On the other hand, the same equations may be solved in terms of electric VP 

A, =An, A =  -?rPoa sinh2posin Of,,(p, p0). (5.10) 

Substituting A, into (5.1) we arrive at 0, E obtained via the electric VP. Thus, there 
are two equivalent ways to find the solution for the permanently polarized ellipsoid. 
They are expressed through the electric scalar and vector potentials, respectively. As 
the space outside the ellipsoid is simply-connected, the potentials + and A, are uniquely 
defined by D, E and, thus, they both have only auxiliary meaning. Now let the major 
semiaxis (c) of the ellipsoid (5.6) tend to infinity while the minor one ( b )  remains the 
same. For this it is enough to put a = b/sinh po in (5.9) and (5.10) and then take the 
limit po+O.  It tums out that in this limit ++O, E+O everywhere. Further, D+O, 
A+ 2?rPob2/p outside the ellipsoid and D + 4rP, A. + 27rP0p inside it. Thus, we recover 
the VP of the electric cylindrical solenoid (into which the ellipsoid '8 degenerates). 
The same situation (that is the disappearance of E, + and the surviving of A,, D )  
takes place for the toroidal solenoid. The moral of these considerations is that in 
general the electric VP has equal status with the scalar one. There are special situations 
in electrostatics in which either electric scalar or vector potentials survive. The electric 
toroidal and cylindrical solenoids are of the latter kind. 

One may wonder why we limit ourselves to the consideration of such complicated 
objects as toroidal solenoids? The reason is that non-trivial (ones which cannot be 
removed by the gauge transformation and which, thus, have a chance to be observed 
experimentally) vector potentials (magnetic or electric) may exist only if the space 
regions where E = H = 0 are multiconnected ones. The exterior of the cylinder or torus 
are the simplest examples of such spaces. However, the finite length of the real 
cylindrical solenoid leads to the appearance of retum magnetic (or electric) flux outside 
the solenoid. This in tum complicates the unambiguous interpretation of the AB type 
experiments. Thus, toroidal configuration seems to be most suitable for our purposes. 

To the best of our knowledge there are only a few references in which the electric 
VP is studied. A short remark on these potentials may be found in the Stratton treatise 
[15] and in [16]. In 1990 Ventura [17] introduced an altemative representation of E 
in terms of electric VP and used it for the quantization of the electron Coulomb field. 
In an interesting paper [18] J e h e n k o  used electric VP as an intermediate step for the 
simplified derivation of the usual Lorentz force. Finally, it was suggested in [I91 that 
electric VP could be generated by the pseudovector Dirac current t,b+y5at,b. In all these 
references the presentation of D in the form D = rot A. was considered to be equivalent 
to the usual one E = -grad +. It is the aim of this paper to present concrete physical 
situations for which the electric vector potential, not the scalar one, has physical 
meaning. 

How to verify the existence of the electric field inside the ETS? We use the same 
means as for the- MTS. We briefly enumerate them: 

in the medium with E P #  1 [ZO]; 
(1) the electromagnetic field appears outside the solenoid when it moves uniformly 

: 
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( 2 )  the electromagnetic field appears outside the accelerated solenoid (both in 

(3) the interaction of the external electric field (EF) with the electric dipoles confined 
vacuum and medium) [l]; 

inside the ETS is given by 

U - EextP dV. (5.11) J 
At large distances from the source of external EF (or for small dimensions of the ETS) 

this reduces to 

1 .  
2C 

U=-I  2 ~ ,  rot Eext=- eIHe,,. (5.12) 

Here el is the so-called toroidal electric moment [3]. For the polarization P given 
above E ,  is directed along the torus symmetry axis and is equal to f?rgdR2. Equation 
(5.12) means that at large distances the ETS interacts with the time varying MF. This 
equation was used in [21] to explain the observed rotation [22] of non-magnetic 
molecules in the uniform MF slowly~varying with time. 

~ ~ In the examples considered so far we have either forced the electromagnetic field 
to come out of the ETS by putting it into motion, or permitted the external EF to 
penetrate inside the ETS and interact with electrical dipoles confined there. There is a 
non-vanishing electric VP outside the ETS which cannot be eliminated by the gauge 
transformation as 4 A, dl = 4 for the closed contours passing through the torus hole. 
Can we prove the existence of the electric VP by making observations outside the ETS? 
(a suitable screen can be used to prevent the penetration of incoming charged particles 
into the ETS). We do not have the obvious answer. In fact, the analogue of the AB 

effect for this case would be quantum scattering of free magnetic charges by the electric 
VP. However, these particles (monopoles) have not been found in nature up to now. 

It is rather curious that superposing the electric and magnetic dipole distributions 
inside the torus we get the electromagnetic toroidal solenoid. The electromagnetic 
inductions differ from zero only inside the torus. Outside it there are non-vanishing 
electric and magnetic vector potentials. 

The question arises as to the technical realization of the ETS. There exist neutral 
dielectrics called electrets that carry non-zero static electric dipole moments [23]. 
Among different types of electrets, the most suitable seems to be the ferro-electrics 
which are the electric analogues of ferromagnetics. From these substances the electrified 
ring can be manufactured, in exactly the same way as the magnetized ring in Tonomura's 
experiments [11,14]. 

: 

6. Non-static electric solenoids 

Consider charge and current densities periodically changing with time. In what follows 
we shall frequently omit the common factor exp(-iwt). It should be restored when 
the time differentiation is performed or in final expressions from which the real part 
should be taken. In order for the continuity equation divj+b=O to be satisfied 
automatically, we choose p and j in the form 

p = exp(-iot)Af j = i o  exp(-iot)Vf: (6.1) 

~ 
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The corresponding electromagnetic potentials and field strengths are: 

Gk(r, r')f(r') dV' E = 4rVf 

A=ikV Gk(r,r')f(r')dV' H=O (6.2) 

Gk = exp(ik1r- r'l)/lr- r'l 1 .  

J 
divA+-(o=O. 

C 

It follows from this that for the function f being confined to the finite region of space 
S the same is valid for the electric strength E. On the other hand, the electromagnetic 
potentials are different from zero both inside and outside S. Thus, densities (6.1) realize 
the non-static electric solenoid. In particular, the function f may be taken to be 
non-vanishing inside the torus (p-d) '+zZ= R2 only. For t~@s, one may simply 
put f = DO(R --J(p -d ) '+  z'). 

The point-like realization [4] of the electric solenoid is obtained when the S function 
choice of function f is made p = DAS3(r), j =  iwDV. S'(r) 

+=-D[4mS3(r)+k2exp(ikr)/r] 
(6.3) 

A=ikDV exp(ikr)/r E=4mDVS3(r) H=O. 

The realization of the cylindrical electric solenoid via the cylindrical capacitor was 
proposed in [ 5 ] .  Beautiful experiments with it were described in [24]. More interesting 
is the case of the spherical capacitor which is obtained when the following choice of 
p and j is made 

e r 
j = h e -  e( r - rl)O( rz- r) (6.4) 

This means that the charge density differs from zero only on the spherical shells (r = rl 
and r = r2) where it periodically changes with time (take into account omitted factor 
exp(-iwt)). The periodical currentj flows between these shells in the radial direction. 
The corresponding scalar and vector potentials (only the radial component of the latter 
differs from zero) may be found in [25]. It tums out that the magnetic field equals 
zero everywhere, while the electric one differs from zero only inside the capacitor 
(rI < r <  r2): E = er/?. 

It follows from (6.2), (6.3) and [25] that outside the non-static electric solenoids 
there exist waves of electromagnetic potentials (EP waves for short). They propagate 
off the source with the velocity of light. As E = H = 0 inside them, they do not carry 
electromagnetic energy. This means that they can be observable (if ever) on the quantum 
level only (as the electromagnetic potentials enter into the Schrodinger equation). Let 
the space region S, where E # 0, be inaccessible for the observer (a suitable screen 
can be used). Can he prove the existence of EP waves operating entirely outside S? 
At first it seems to be impossible. In fact, the transformation 

? p =- [S(r- r,) - s(r-  rz)] 
4mZ 

' 

1 .  A + A'= A -VX 

$+$'= $ exp(-iex/fic) 

4 + +I  = 6 +; x 

Gk(r, r') f (r') d V' 
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removes electromagnetic potentials outside S. If the function x is single-valued (con- 
tinuous) outside S, then rl and @' describe the same physical situation. In all cases 
considered in this section the electromagnetic potentials can be removed without 
spoiling the singlevaluedness properties of the wavefunction and, thus, they are not 
observable. In the static limit (6.1) and (6.2) become trivial: p =Af; j = O ,  4 =4rrf; 
A = 0, E = 47rVf; H = 0. At the present moment we are unable to construct non-static 
solenoids having, in the static limit, the non-trivial electric solenoids considered in 
section 5. 

7. Non-static electromagnetic solenoids 

Two conditions should be fulfilled for the observability of EP waves. First, the space 
surrounding the region S, where E, H # 0 should be multiconnected. Second, the 
function ,y eliminating the electromagnetic potential outside S should be multivalued. 
We propose the following experimental arrangement for the generation and detection 
of EP waves (figure 4). The beam of charged particles (e.g. electrons) is scattered by 
the impenetrable torus inside which there are non-radiating charge and current densities 
periodically changing with time. The phase of the wavefunction is modulated for the 
electrons passing through the torus hole. As a result an interference picture periodically 
changing with time arises at the screen which may be sufficiently separated from the 
torus. Thus, there appears a principal possibility to transfer the information without 
transfemng the electromagnetic energy. Certainly, the energy is needed to sustain the 
current inside the torus (by the way, it may be superconducting) as well as incoming 
electron beam. The main problem is to create charge and current densities generating 
non-trivial EP waves. The following particular example illustrates the difficulties. Let 
p and j be of the form 

p =ik(div N+A$) j=(rotrotN-kZN)c-ck2V$. (7.1) 
Here $ and N differ from zero only inside torus. The corresponding potentials and 
field strengths are 

4 = ik,y - 47rik1/1 

H = 4w rot N 

 again there are EP waves outside the TS. If @ is the magnetic flux inside the -is and 
C is the closed contour lying outside the TS and passing through its hole, then 

A = V,y+4?rN 

E =4?rik(N+V@). 

,y=j G(div N-k2$)dV' 

(7.2) 

Figure 4. The schematic presentation of inntalla- Y tion for generation and registration of EP waves. 
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5 N d S  =$ AI d l  = 4. Since N = 0 outside the TS so x is a multivalued function there. 
Further, the function N should not be well-behaved. This may be seen from the Stokes 
theorem according to which 5 H d S  =47r 5 rot N d S  = q5 =47r I NI dl. This means that 
N # 0 outside the TS, which contradicts our earlier assumption on the vanishing of N 
outside the TS. But the Stokes theorem is valid only for those functions which are not 
too singular. So, N and, as a consequence, j and E are singular inside the TS. By the 
way, the singularity of E invalidates the fact that E # 0 outside the TS (as one may 
erroneously deduce by applying the Stokes theorem to both sides of the Maxwell 
equation rot E = -H/c). 

It is not clear how to solve the Helmholtz equation with such a singular current. 
Further, we cannot use the multipole expansion of the wave Green function G in 
terms of the usual spherical harmonics as we lose the non-singlevaluedness property 
of the function ,y (the contour passing through the TS hole cannot be parametrized in 
terms of polar angle 8). On the other hand, the expansion of the wave Green function 
does not exist in terms of the toroidal coordinates (which are suitable for the description 
of the above contour). Up to now, we have not succeeded in obtaining an explicit 
expression for N which meets the above demands. This makes questionable the 
particular realization (7.1). However, the situation with static TS gives a hint that these 
complications are of a technical nature, not problems of principle. In fact, there are 
known VP of static TS [7]  and a multivalued function x satisfying A =Vx [26]. It is 
also possible to find the singular function N (H =4?rN) vanishing outside the TS (see 
[27] and references therein). The use of the N function is justified for static TS and 
we do not see obvious reasons why it should not work for the non-static case. This is 
confirmed by recent considerations 1281 of the AB effect in terms of time-dependent 
VP. It should be noted that the idea of the existence of EP waves is not new [5,29,30]. 
The key problem, however, is to find physical conditions under which these waves 
become observable (similarly to the observation [ l l ]  of static VP in the usual AB effect). 

Up to now we have considered non-static solenoids in which both charge and 
current densities were different from zero. Is it possible to construct a non-static 
solenoid by using only the time-dependent current density? The following current 
configuration was proposed in [6]. The torus T((p-d)’+z’=R’,  see figure 5) is 
densely covered by the infinitely thin toroidal solenoids ts;. It is claimed in,[6] that 
for the periodical current in the windings of Est the electromagnetic strengths are 
confined to the interior of T. We prove now that this does not take place for the 
infinitely thin torus T. The set of toroidal solenoids ts, (being infinitely small now) 
can be viewed as a circular chain of toroidal moments (TM) [31]: 

t = exp(-iot)tn,S(p - d)S(z ) .  (7.3) 
(See figure 2 where arrows now mean t) To this TM there corresponds the current j 

Figure 5. The torus T is ‘dressed‘ by the toroidal 
solenoids IS! with alternate currents in their coils. For 
very thin solenoids IS, and dense covering of T by the 
electromagnetic strengths are confined inside T (accord- 
ing to [6]). 
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given by j = c r o t r o t t  [31]. The VP generated by this chain of TM is A =  
5 Gk(r, r’) rot rot t ( r ’ )  dV’ (the factor exp(-iwr) is again omitted). Here integration is 
performed along the circumference of the radius d. Integrating twice by parts we get 

A = rot rot Gkt dV‘= (grad div+ k2)n,I + 4?rt(r). I 
Here 

COS Q dQ 2 = ( r2+  d Z  -2dp cos Q)’”. 

As I is independent of Q, so div( In?) = 0 and 

A = 4 4  r )  + k’ln,. 

The exact value of I was found in [25] .  It is given by 

(7.4) 

Here 

i= +(rl + rz) d =;(I, - r2) r,.z = [ ( p  *d)2+z2]”2 .  

Hence, I is certainly different from zero. Then outside the chain of TM there are 
non-vanishing field strengths: 

kZ a E* = ik’l H,=-- (sin e I) H, = -- - ( r I )  
k2 a 

r s i n e a e  r Jr 

Thus, E and H go beyond the interior of T and this completes our proof. It is valid 
for the infinitely thin torus T. But the measurements in [6 ]  were performed for a torus 
of finite radius. It is known that for the cylindrical solenoid with periodical current in 
its winding the vector potential disappears outside the solenoid for specific values of 
kR ( k =  w/c, R is the radius of the solenoid). Suppose that the same property takes 
place for the current configuration of figure 5 .  Then, the disappearance of the elec- 
tromagnetic strengths outside T observed in [6]  may be attributed to the proximity of 
the torus radius to the specific value mentioned above. 

In sections 3-5, we have constructed static electric and magnetic solenoids using 
closed chains of electric and magnetic dipoles, respectively. What happens if we change 
these dipoles to static toroidal (electric or magnetic) moments? The VP, obtained by 
putting w = 0 in (7.3), vanishes outside the treated spin chains (or tubes). This means 
that complete self-screening takes place. This property (self-screening) is conserved 
for the arbitrary continuous deformation of toroidal spin chains [13]. 

8. Conclusion 

We briefly summarize the main results obtained: 
( 1 )  A realistic construction of the static ,electric solenoid is presented. Outside it 

there is an electric vector potential which cannot be eliminated by the gauge transforma- 
tion. Concrete physical examples are given for which the electric vector potential, not 
the scalar one, has physical meaning. , 
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(2) Non-static solenoids are considered. They emit waves of electromagnetic poten- 
tials propagating off the solenoid with the velocity of light. The conditions are discussed 
under which these waves can be detected. 

We feel that the present paper raises more questions than answers. We rephrase 
the question posed by Aharonov and Bohm in their famous 1959 paper [32] in the 
following way: Do the electric vector potential of the static electric solenoid and the 
electromagnetic potentials of the non-static solenoid have the physical meaning? How 
can their existence be verified experimentally? 
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